3.2.25 \(\int \frac {A+B \tan (e+f x)+C \tan ^2(e+f x)}{(c+d \tan (e+f x))^{5/2}} \, dx\) [125]

3.2.25.1 Optimal result
3.2.25.2 Mathematica [C] (verified)
3.2.25.3 Rubi [A] (warning: unable to verify)
3.2.25.4 Maple [B] (verified)
3.2.25.5 Fricas [B] (verification not implemented)
3.2.25.6 Sympy [F]
3.2.25.7 Maxima [F(-1)]
3.2.25.8 Giac [F(-1)]
3.2.25.9 Mupad [B] (verification not implemented)

3.2.25.1 Optimal result

Integrand size = 35, antiderivative size = 209 \[ \int \frac {A+B \tan (e+f x)+C \tan ^2(e+f x)}{(c+d \tan (e+f x))^{5/2}} \, dx=-\frac {(i A+B-i C) \text {arctanh}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c-i d}}\right )}{(c-i d)^{5/2} f}-\frac {(B-i (A-C)) \text {arctanh}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c+i d}}\right )}{(c+i d)^{5/2} f}-\frac {2 \left (c^2 C-B c d+A d^2\right )}{3 d \left (c^2+d^2\right ) f (c+d \tan (e+f x))^{3/2}}-\frac {2 \left (2 c (A-C) d-B \left (c^2-d^2\right )\right )}{\left (c^2+d^2\right )^2 f \sqrt {c+d \tan (e+f x)}} \]

output
-(I*A+B-I*C)*arctanh((c+d*tan(f*x+e))^(1/2)/(c-I*d)^(1/2))/(c-I*d)^(5/2)/f 
-(B-I*(A-C))*arctanh((c+d*tan(f*x+e))^(1/2)/(c+I*d)^(1/2))/(c+I*d)^(5/2)/f 
-2*(2*c*(A-C)*d-B*(c^2-d^2))/(c^2+d^2)^2/f/(c+d*tan(f*x+e))^(1/2)-2/3*(A*d 
^2-B*c*d+C*c^2)/d/(c^2+d^2)/f/(c+d*tan(f*x+e))^(3/2)
 
3.2.25.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.98 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.07 \[ \int \frac {A+B \tan (e+f x)+C \tan ^2(e+f x)}{(c+d \tan (e+f x))^{5/2}} \, dx=-\frac {2 C \left (c^2+d^2\right )+(B c+(-A+C) d) \left (i (c+i d) \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},1,-\frac {1}{2},\frac {c+d \tan (e+f x)}{c-i d}\right )-(i c+d) \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},1,-\frac {1}{2},\frac {c+d \tan (e+f x)}{c+i d}\right )\right )-3 B \left (i (c+i d) \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},\frac {c+d \tan (e+f x)}{c-i d}\right )-(i c+d) \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},\frac {c+d \tan (e+f x)}{c+i d}\right )\right ) (c+d \tan (e+f x))}{3 d \left (c^2+d^2\right ) f (c+d \tan (e+f x))^{3/2}} \]

input
Integrate[(A + B*Tan[e + f*x] + C*Tan[e + f*x]^2)/(c + d*Tan[e + f*x])^(5/ 
2),x]
 
output
-1/3*(2*C*(c^2 + d^2) + (B*c + (-A + C)*d)*(I*(c + I*d)*Hypergeometric2F1[ 
-3/2, 1, -1/2, (c + d*Tan[e + f*x])/(c - I*d)] - (I*c + d)*Hypergeometric2 
F1[-3/2, 1, -1/2, (c + d*Tan[e + f*x])/(c + I*d)]) - 3*B*(I*(c + I*d)*Hype 
rgeometric2F1[-1/2, 1, 1/2, (c + d*Tan[e + f*x])/(c - I*d)] - (I*c + d)*Hy 
pergeometric2F1[-1/2, 1, 1/2, (c + d*Tan[e + f*x])/(c + I*d)])*(c + d*Tan[ 
e + f*x]))/(d*(c^2 + d^2)*f*(c + d*Tan[e + f*x])^(3/2))
 
3.2.25.3 Rubi [A] (warning: unable to verify)

Time = 1.12 (sec) , antiderivative size = 231, normalized size of antiderivative = 1.11, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.343, Rules used = {3042, 4111, 3042, 4012, 25, 3042, 4022, 3042, 4020, 25, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \tan (e+f x)+C \tan ^2(e+f x)}{(c+d \tan (e+f x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \tan (e+f x)+C \tan (e+f x)^2}{(c+d \tan (e+f x))^{5/2}}dx\)

\(\Big \downarrow \) 4111

\(\displaystyle \frac {\int \frac {A c-C c+B d+(B c-(A-C) d) \tan (e+f x)}{(c+d \tan (e+f x))^{3/2}}dx}{c^2+d^2}-\frac {2 \left (A d^2-B c d+c^2 C\right )}{3 d f \left (c^2+d^2\right ) (c+d \tan (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {A c-C c+B d+(B c-(A-C) d) \tan (e+f x)}{(c+d \tan (e+f x))^{3/2}}dx}{c^2+d^2}-\frac {2 \left (A d^2-B c d+c^2 C\right )}{3 d f \left (c^2+d^2\right ) (c+d \tan (e+f x))^{3/2}}\)

\(\Big \downarrow \) 4012

\(\displaystyle \frac {\frac {\int -\frac {C c^2-2 B d c-C d^2-A \left (c^2-d^2\right )+\left (2 c (A-C) d-B \left (c^2-d^2\right )\right ) \tan (e+f x)}{\sqrt {c+d \tan (e+f x)}}dx}{c^2+d^2}-\frac {2 \left (2 c d (A-C)-B \left (c^2-d^2\right )\right )}{f \left (c^2+d^2\right ) \sqrt {c+d \tan (e+f x)}}}{c^2+d^2}-\frac {2 \left (A d^2-B c d+c^2 C\right )}{3 d f \left (c^2+d^2\right ) (c+d \tan (e+f x))^{3/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {-\frac {\int \frac {C c^2-2 B d c-C d^2-A \left (c^2-d^2\right )+\left (2 c (A-C) d-B \left (c^2-d^2\right )\right ) \tan (e+f x)}{\sqrt {c+d \tan (e+f x)}}dx}{c^2+d^2}-\frac {2 \left (2 c d (A-C)-B \left (c^2-d^2\right )\right )}{f \left (c^2+d^2\right ) \sqrt {c+d \tan (e+f x)}}}{c^2+d^2}-\frac {2 \left (A d^2-B c d+c^2 C\right )}{3 d f \left (c^2+d^2\right ) (c+d \tan (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {\int \frac {C c^2-2 B d c-C d^2-A \left (c^2-d^2\right )+\left (2 c (A-C) d-B \left (c^2-d^2\right )\right ) \tan (e+f x)}{\sqrt {c+d \tan (e+f x)}}dx}{c^2+d^2}-\frac {2 \left (2 c d (A-C)-B \left (c^2-d^2\right )\right )}{f \left (c^2+d^2\right ) \sqrt {c+d \tan (e+f x)}}}{c^2+d^2}-\frac {2 \left (A d^2-B c d+c^2 C\right )}{3 d f \left (c^2+d^2\right ) (c+d \tan (e+f x))^{3/2}}\)

\(\Big \downarrow \) 4022

\(\displaystyle -\frac {2 \left (A d^2-B c d+c^2 C\right )}{3 d f \left (c^2+d^2\right ) (c+d \tan (e+f x))^{3/2}}+\frac {-\frac {2 \left (2 c d (A-C)-B \left (c^2-d^2\right )\right )}{f \left (c^2+d^2\right ) \sqrt {c+d \tan (e+f x)}}-\frac {-\frac {1}{2} (c-i d)^2 (A+i B-C) \int \frac {1-i \tan (e+f x)}{\sqrt {c+d \tan (e+f x)}}dx-\frac {1}{2} (c+i d)^2 (A-i B-C) \int \frac {i \tan (e+f x)+1}{\sqrt {c+d \tan (e+f x)}}dx}{c^2+d^2}}{c^2+d^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {2 \left (A d^2-B c d+c^2 C\right )}{3 d f \left (c^2+d^2\right ) (c+d \tan (e+f x))^{3/2}}+\frac {-\frac {2 \left (2 c d (A-C)-B \left (c^2-d^2\right )\right )}{f \left (c^2+d^2\right ) \sqrt {c+d \tan (e+f x)}}-\frac {-\frac {1}{2} (c-i d)^2 (A+i B-C) \int \frac {1-i \tan (e+f x)}{\sqrt {c+d \tan (e+f x)}}dx-\frac {1}{2} (c+i d)^2 (A-i B-C) \int \frac {i \tan (e+f x)+1}{\sqrt {c+d \tan (e+f x)}}dx}{c^2+d^2}}{c^2+d^2}\)

\(\Big \downarrow \) 4020

\(\displaystyle -\frac {2 \left (A d^2-B c d+c^2 C\right )}{3 d f \left (c^2+d^2\right ) (c+d \tan (e+f x))^{3/2}}+\frac {-\frac {2 \left (2 c d (A-C)-B \left (c^2-d^2\right )\right )}{f \left (c^2+d^2\right ) \sqrt {c+d \tan (e+f x)}}-\frac {\frac {i (c-i d)^2 (A+i B-C) \int -\frac {1}{(i \tan (e+f x)+1) \sqrt {c+d \tan (e+f x)}}d(-i \tan (e+f x))}{2 f}-\frac {i (c+i d)^2 (A-i B-C) \int -\frac {1}{(1-i \tan (e+f x)) \sqrt {c+d \tan (e+f x)}}d(i \tan (e+f x))}{2 f}}{c^2+d^2}}{c^2+d^2}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {2 \left (A d^2-B c d+c^2 C\right )}{3 d f \left (c^2+d^2\right ) (c+d \tan (e+f x))^{3/2}}+\frac {-\frac {2 \left (2 c d (A-C)-B \left (c^2-d^2\right )\right )}{f \left (c^2+d^2\right ) \sqrt {c+d \tan (e+f x)}}-\frac {\frac {i (c+i d)^2 (A-i B-C) \int \frac {1}{(1-i \tan (e+f x)) \sqrt {c+d \tan (e+f x)}}d(i \tan (e+f x))}{2 f}-\frac {i (c-i d)^2 (A+i B-C) \int \frac {1}{(i \tan (e+f x)+1) \sqrt {c+d \tan (e+f x)}}d(-i \tan (e+f x))}{2 f}}{c^2+d^2}}{c^2+d^2}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {2 \left (A d^2-B c d+c^2 C\right )}{3 d f \left (c^2+d^2\right ) (c+d \tan (e+f x))^{3/2}}+\frac {-\frac {2 \left (2 c d (A-C)-B \left (c^2-d^2\right )\right )}{f \left (c^2+d^2\right ) \sqrt {c+d \tan (e+f x)}}-\frac {-\frac {(c-i d)^2 (A+i B-C) \int \frac {1}{-\frac {i \tan ^2(e+f x)}{d}-\frac {i c}{d}+1}d\sqrt {c+d \tan (e+f x)}}{d f}-\frac {(c+i d)^2 (A-i B-C) \int \frac {1}{\frac {i \tan ^2(e+f x)}{d}+\frac {i c}{d}+1}d\sqrt {c+d \tan (e+f x)}}{d f}}{c^2+d^2}}{c^2+d^2}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {2 \left (A d^2-B c d+c^2 C\right )}{3 d f \left (c^2+d^2\right ) (c+d \tan (e+f x))^{3/2}}+\frac {-\frac {2 \left (2 c d (A-C)-B \left (c^2-d^2\right )\right )}{f \left (c^2+d^2\right ) \sqrt {c+d \tan (e+f x)}}-\frac {-\frac {(c-i d)^2 (A+i B-C) \arctan \left (\frac {\tan (e+f x)}{\sqrt {c+i d}}\right )}{f \sqrt {c+i d}}-\frac {(c+i d)^2 (A-i B-C) \arctan \left (\frac {\tan (e+f x)}{\sqrt {c-i d}}\right )}{f \sqrt {c-i d}}}{c^2+d^2}}{c^2+d^2}\)

input
Int[(A + B*Tan[e + f*x] + C*Tan[e + f*x]^2)/(c + d*Tan[e + f*x])^(5/2),x]
 
output
(-2*(c^2*C - B*c*d + A*d^2))/(3*d*(c^2 + d^2)*f*(c + d*Tan[e + f*x])^(3/2) 
) + (-((-(((A - I*B - C)*(c + I*d)^2*ArcTan[Tan[e + f*x]/Sqrt[c - I*d]])/( 
Sqrt[c - I*d]*f)) - ((A + I*B - C)*(c - I*d)^2*ArcTan[Tan[e + f*x]/Sqrt[c 
+ I*d]])/(Sqrt[c + I*d]*f))/(c^2 + d^2)) - (2*(2*c*(A - C)*d - B*(c^2 - d^ 
2)))/((c^2 + d^2)*f*Sqrt[c + d*Tan[e + f*x]]))/(c^2 + d^2)
 

3.2.25.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4012
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(b*c - a*d)*((a + b*Tan[e + f*x])^(m + 1)/ 
(f*(m + 1)*(a^2 + b^2))), x] + Simp[1/(a^2 + b^2)   Int[(a + b*Tan[e + f*x] 
)^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a 
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1 
]
 

rule 4020
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[c*(d/f)   Subst[Int[(a + (b/d)*x)^m/(d^2 + 
c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[ 
b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]
 

rule 4022
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(c + I*d)/2   Int[(a + b*Tan[e + f*x])^m*( 
1 - I*Tan[e + f*x]), x], x] + Simp[(c - I*d)/2   Int[(a + b*Tan[e + f*x])^m 
*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c 
 - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]
 

rule 4111
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - 
 a*b*B + a^2*C)*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2 + b^2))), x 
] + Simp[1/(a^2 + b^2)   Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[b*B + a*(A - 
 C) - (A*b - a*B - b*C)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B 
, C}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0] && LtQ[m, -1] && NeQ[a^2 + b^2, 0 
]
 
3.2.25.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(6787\) vs. \(2(184)=368\).

Time = 0.18 (sec) , antiderivative size = 6788, normalized size of antiderivative = 32.48

method result size
parts \(\text {Expression too large to display}\) \(6788\)
derivativedivides \(\text {Expression too large to display}\) \(20647\)
default \(\text {Expression too large to display}\) \(20647\)

input
int((A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(5/2),x,method=_RETUR 
NVERBOSE)
 
output
result too large to display
 
3.2.25.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 13143 vs. \(2 (177) = 354\).

Time = 7.15 (sec) , antiderivative size = 13143, normalized size of antiderivative = 62.89 \[ \int \frac {A+B \tan (e+f x)+C \tan ^2(e+f x)}{(c+d \tan (e+f x))^{5/2}} \, dx=\text {Too large to display} \]

input
integrate((A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(5/2),x, algori 
thm="fricas")
 
output
Too large to include
 
3.2.25.6 Sympy [F]

\[ \int \frac {A+B \tan (e+f x)+C \tan ^2(e+f x)}{(c+d \tan (e+f x))^{5/2}} \, dx=\int \frac {A + B \tan {\left (e + f x \right )} + C \tan ^{2}{\left (e + f x \right )}}{\left (c + d \tan {\left (e + f x \right )}\right )^{\frac {5}{2}}}\, dx \]

input
integrate((A+B*tan(f*x+e)+C*tan(f*x+e)**2)/(c+d*tan(f*x+e))**(5/2),x)
 
output
Integral((A + B*tan(e + f*x) + C*tan(e + f*x)**2)/(c + d*tan(e + f*x))**(5 
/2), x)
 
3.2.25.7 Maxima [F(-1)]

Timed out. \[ \int \frac {A+B \tan (e+f x)+C \tan ^2(e+f x)}{(c+d \tan (e+f x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate((A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(5/2),x, algori 
thm="maxima")
 
output
Timed out
 
3.2.25.8 Giac [F(-1)]

Timed out. \[ \int \frac {A+B \tan (e+f x)+C \tan ^2(e+f x)}{(c+d \tan (e+f x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate((A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(5/2),x, algori 
thm="giac")
 
output
Timed out
 
3.2.25.9 Mupad [B] (verification not implemented)

Time = 35.92 (sec) , antiderivative size = 14163, normalized size of antiderivative = 67.77 \[ \int \frac {A+B \tan (e+f x)+C \tan ^2(e+f x)}{(c+d \tan (e+f x))^{5/2}} \, dx=\text {Too large to display} \]

input
int((A + B*tan(e + f*x) + C*tan(e + f*x)^2)/(c + d*tan(e + f*x))^(5/2),x)
 
output
(log(96*A^3*c^3*d^13*f^2 - ((((((320*A^4*c^2*d^8*f^4 - 16*A^4*d^10*f^4 - 1 
760*A^4*c^4*d^6*f^4 + 1600*A^4*c^6*d^4*f^4 - 400*A^4*c^8*d^2*f^4)^(1/2) - 
4*A^2*c^5*f^2 + 40*A^2*c^3*d^2*f^2 - 20*A^2*c*d^4*f^2)/(c^10*f^4 + d^10*f^ 
4 + 5*c^2*d^8*f^4 + 10*c^4*d^6*f^4 + 10*c^6*d^4*f^4 + 5*c^8*d^2*f^4))^(1/2 
)*(((((320*A^4*c^2*d^8*f^4 - 16*A^4*d^10*f^4 - 1760*A^4*c^4*d^6*f^4 + 1600 
*A^4*c^6*d^4*f^4 - 400*A^4*c^8*d^2*f^4)^(1/2) - 4*A^2*c^5*f^2 + 40*A^2*c^3 
*d^2*f^2 - 20*A^2*c*d^4*f^2)/(c^10*f^4 + d^10*f^4 + 5*c^2*d^8*f^4 + 10*c^4 
*d^6*f^4 + 10*c^6*d^4*f^4 + 5*c^8*d^2*f^4))^(1/2)*(c + d*tan(e + f*x))^(1/ 
2)*(64*c*d^22*f^5 + 640*c^3*d^20*f^5 + 2880*c^5*d^18*f^5 + 7680*c^7*d^16*f 
^5 + 13440*c^9*d^14*f^5 + 16128*c^11*d^12*f^5 + 13440*c^13*d^10*f^5 + 7680 
*c^15*d^8*f^5 + 2880*c^17*d^6*f^5 + 640*c^19*d^4*f^5 + 64*c^21*d^2*f^5))/4 
 - 32*A*d^21*f^4 - 160*A*c^2*d^19*f^4 - 128*A*c^4*d^17*f^4 + 896*A*c^6*d^1 
5*f^4 + 3136*A*c^8*d^13*f^4 + 4928*A*c^10*d^11*f^4 + 4480*A*c^12*d^9*f^4 + 
 2432*A*c^14*d^7*f^4 + 736*A*c^16*d^5*f^4 + 96*A*c^18*d^3*f^4))/4 - (c + d 
*tan(e + f*x))^(1/2)*(320*A^2*c^4*d^14*f^3 - 16*A^2*d^18*f^3 + 1024*A^2*c^ 
6*d^12*f^3 + 1440*A^2*c^8*d^10*f^3 + 1024*A^2*c^10*d^8*f^3 + 320*A^2*c^12* 
d^6*f^3 - 16*A^2*c^16*d^2*f^3))*(((320*A^4*c^2*d^8*f^4 - 16*A^4*d^10*f^4 - 
 1760*A^4*c^4*d^6*f^4 + 1600*A^4*c^6*d^4*f^4 - 400*A^4*c^8*d^2*f^4)^(1/2) 
- 4*A^2*c^5*f^2 + 40*A^2*c^3*d^2*f^2 - 20*A^2*c*d^4*f^2)/(c^10*f^4 + d^10* 
f^4 + 5*c^2*d^8*f^4 + 10*c^4*d^6*f^4 + 10*c^6*d^4*f^4 + 5*c^8*d^2*f^4))...